THE UNIVERSITY OF THE STATE OF NEW YORK • THE STATE EDUCATION DEPARTMENT • ALBANY, NY 12234

Reference Tables for Physical Setting/PHYSICS

2006 Edition

P

List of Physical Constants

Name

Symbol

Value

Universal gravitational constant

G

6.67 × 10^{-11 }N•m^{2}/kg^{2}

Acceleration due to gravity

g

9.81 m/s^{2}

Speed of light in a vacuum

c

3.00 ×

10^{8} m/s

Speed of sound in air at STP

3.31 ×

10^{2} m/s

Mass of Earth

5.98 ×

10^{24 }kg

Mass of the Moon

7.35 ×

10^{22 }kg

Mean radius of Earth

6.37 ×

10^{6} m

Mean radius of the Moon

1.74 ×

10^{6} m

Mean distance—Earth to the Moon

3.84 ×

10^{8} m

Mean distance—Earth to the Sun

1.50 ×

10^{11} m

Electrostatic constant

k

8.99 ×

10^{9} N•m^{2}/C^{2}

1 elementary charge

e

1.60 ×

10^{-19} C

1 coulomb (C)

6.25 ×

10^{18} elementary charges

1 electronvolt (eV)

1.60 ×

10^{-19} J

Planck’s constant

h

6.63 ×

10^{-34} J•s

1 universal mass unit (u)

9.31 ×

10^{2} MeV

Rest mass of the electron

m_{e}

9.11 ×

10^{-31} kg

Rest mass of the proton

m_{p}

1.67 ×

10^{-27} kg

Rest mass of the neutron

m_{n}

1.67 ×

10^{-27} kg

Prefixes for Powers of 10

Approximate Coefficients of Friction

Prefix

Symbol

Notation

Kinetic Static

tera

T

10^{12}

Rubber on concrete (dry)

0.68

0.90

giga

G

10^{9}

Rubber on concrete (wet)

0.58

mega

M

10^{6}

Rubber on asphalt (dry)

0.67

0.85

kilo

k

10^{3}

Rubber on asphalt (wet)

0.53

deci

d

10^{-1}

Rubber on ice

0.15

centi

c

10^{-2}

Waxed ski on snow

0.05

0.14

milli

m

10^{-3}

Wood on wood

0.30

0.42

micro

µ

10^{-6}

Steel on steel

0.57

0.74

Copper on steel

0.36

0.53

nano

n

10^{-9}

Teflon on Teflon

0.04

pico

p

10^{-12}

The Electromagnetic Spectrum

Wavelength in a vacuum (m)

10^{-13}

10^{-12}

10^{-11}

10^{-10}

10^{-9}

10^{-8}

10^{-7}

10^{-6}

10^{-5}

10^{-4}

10^{-3}

10^{-2}

10^{-1}

10^{0}

10^{1}

10^{2}

10^{3}

10^{4}

X rays

Microwaves

Long Radio Waves

TV,

Gamma Rays

Ultraviolet

Infrared

AM

FM

Radio Waves

10^{21}

10^{20}

10^{19}

10^{18}

10^{17}

1016 10^{15}

10^{14}

10^{13}

10^{12}

10^{11}

10^{10}

10^{9}

10^{8}

10^{7}

10^{6}

10^{5}

Frequency (Hz)

Visible Light

(not to scale)

Violet

Blue

Green

Yellow

Orange

Red

Absolute Indices of Refraction

(f = 5.09 × 10^{14} Hz)

Air

1.00

Corn oil

1.47

Diamond

2.42

Ethyl alcohol

1.36

Glass, crown

1.52

Glass, flint

1.66

Glycerol

1.47

Lucite

1.50

Quartz, fused

1.46

Sodium chloride

1.54

Water

1.33

Zircon

1.92

Reference Tables for Physical Setting/Physics 2006 Edition

Page 2

Energy Level Diagrams

Hydrogen

Mercury

Level

Energy (eV)

Level

Energy (eV)

Ionization

n = ∞

0.00

n = 6

-0.38

n = 5

-0.54

n = 4

-0.85

n = 3

-1.51

Ionization

j

0.00

n = 2

-3.40

i

-1.56

h

-1.57

g

-2.48

f

-2.68

e

-3.71

-4.95

d

c

-5.52

b

-5.74

Ground State

Ground State

n = 1

-13.60

a

-10.38

Energy Levels for the Hydrogen Atom

A Few Energy Levels for the Mercury Atom

Classification of Matter

Particles of the Standard Model

Quarks

Matter

Name

up

charm

top

Symbol

u

c

t

Charge

+2e

+2e

+2e

3

3

3

Hadrons

Leptons

down

strange

bottom

d

s

b

–1 e

-1 e

-1 e

3

3

3

Baryons

Mesons

Leptons

electron

muon

tau

e

µ

τ

–1e

-1e

-1e

three

quark and

quarks

antiquark

electron

muon

tau

neutrino

neutrino

neutrino

ν_{e}

ν_{µ}

ν_{τ}

0

0

0

Note: For each particle, there is a corresponding antiparticle with a

charge opposite that of its associated particle.

Reference Tables for Physical Setting/Physics 2006 Edition

Page

3

Electricity

kq_{1}q_{2}

F_{e}

=

A = cross-sectional area

r^{2}

E = electric field strength

F_{e}

E =

F_{e} = electrostatic force

q

I = current

W

V =

k = electrostatic constant

q

L = length of conductor

∆q

I =

P = electrical power

t

q = charge

V

R =

I

R = resistance

R_{eq}= equivalent resistance

ρL

r = distance between centers

R =

A

t = time

V^{2}

P = VI = I^{2}R =

V = potential difference

R

W = work (electrical energy)

V^{2}t

W = Pt = VIt = I^{2}Rt =

∆ = change

R

ρ = resistivity

Series Circuits

Parallel Circuits

I = I_{1 }= I_{2} = I_{3} = . . .

I = I_{1} + I_{2} + I_{3} + . . .

V = V_{1} + V_{2} + V_{3} + . . .

V = V_{1} = V_{2} = V_{3} = . . .

1

1

1

1

R_{eq} = R_{1} + R_{2} + R_{3} + . . .

=

+

+

+ . . .

R_{eq}

R_{1}

R_{2}

R

3

Circuit Symbols

Resistivities at 20°C

cell

Material

Resistivity (Ω•m)

battery

Aluminum

2.82 × 10^{-8}

switch

Copper

1.72 × 10^{-8}

Gold

2.44 × 10^{-8}

V

voltmeter

Nichrome

150. × 10^{-8}

A

ammeter

Silver

1.59 × 10^{-8}

resistor

Tungsten

5.60 × 10^{-8}

variable resistor

lamp

Reference Tables for Physical Setting/Physics 2006 Edition

Page 4

Waves

v = f λ

c = speed of light in a vacuum

1

f = frequency

T =

f

n = absolute index of refraction

θ_{i} = θ_{r}

T = period

c

n =

v = velocity or speed

v

λ = wavelength

n_{1} sin θ_{1} = n_{2} sin θ_{2}

θ = angle

n_{2}

v_{1}

λ_{1}

θ_{i} = angle of incidence

=

=

n_{1}

v_{2}

λ_{2}

θ_{r} = angle of reflection

Modern Physics

hc

E_{photon} = hf =

c = speed of light in a vacuum

λ

E = energy

E_{photon} = E_{i} - E_{f}

f = frequency

E = mc^{2}

h = Planck’s constant

m = mass

λ = wavelength

Geometry and Trigonometry

Rectangle

A = area

A = bh

b = base

C = circumference

Triangle

h = height

A = 1bh

2

r = radius

Circle

A = πr^{2}

C = 2πr

Right Triangle

c^{2} = a^{2} + b^{2}

a

sin θ =

c

c

a

b

cos θ =

c

90°

θ

tan θ = ^{a}

b

b

Reference Tables for Physical Setting/Physics 2006 Edition

Page

5

Mechanics

d

a = acceleration

v =

t

a_{c} = centripetal acceleration

A = any vector quantity

∆v

a =

t

d = displacement or distance

v_{f} = v_{i} + at

E_{T} = total energy

F = force

d = v_{i}t + 1at^{2}

2

F_{c}

= centripetal force

vf2 = vi2 + 2ad

F_{f } = force of friction

A_{y} = A sin θ

F_{g} = weight or force due to gravity

F_{N}

= normal force

A_{x} = A cos θ

F_{net} = net force

Fnet

a =

F_{s} = force on a spring

m

g = acceleration due to gravity or

F_{f} = µF_{N}

gravitational field strength

Gm_{1}m_{2}

G = universal gravitational constant

F_{g} =

r^{2}

h = height

Fg

J = impulse

g =

m

k = spring constant

p = mv

KE = kinetic energy

m = mass

p_{before} = p_{after}

p = momentum

J = F_{net} t = ∆p

P = power

F_{s} = kx

PE = potential energy

= potential energy stored in a spring

PE_{s}

PE_{s} = 1kx^{2}

2

Q = internal energy

F_{c} = ma_{c}

r = radius or distance between centers

2

v

t = time interval

a_{c} =

r

v = velocity or speed

∆PE = mg∆h

= average velocity or average speed

v

W = work

KE = 1mv^{2}

2

x = change in spring length from the

W = Fd = ∆E_{T}

equilibrium position

∆ = change

E_{T} = PE + KE + Q

θ = angle

W

Fd

P =

=

= F

v

µ = coefficient of friction

t

t

Reference Tables for Physical Setting/Physics 2006 Edition

Page 6

DET 615 96-05540 96-040 CDC