
Name:	Date:	Period:

Scientific Notation

Scientific notation provides a place to hold the zeroes that come after a whole number or before a fraction. The number 100,000,000 for example, takes up a lot of room and takes time to write out, while 10⁸ is much more efficient.

Though we think of zero as having no value, zeroes can make a number much bigger or smaller. Think about the difference between 10 dollars and 100 dollars. Even one zero can make a big difference in the value of the number. In the same way, 0.1 (one-tenth) of the US military budget is much more than 0.01 (one-hundredth) of the budget.

The small number to the right of the 10 in scientific notation is called the exponent. Note that a negative exponent indicates that the number is a fraction (less than one).

The line below shows the equivalent values of decimal notation (the way we write numbers usually, like "1,000 dollars") and scientific notation (10^3 dollars). For numbers smaller than one, the fraction is given as well

	smaller			bigger		
Fraction	1/100 1/10					
Decimal notation	0.01 0.1	1	10	100	1,000	
Scientific notation	10-2 10-1	100	101	102	103	

Teach me about this...this thing called scientific notation!

Practice with Scientific Notation

Write out the decimal equivalent (regular form) of the following numbers that are in scientific notation.

Section A: Model: $10^1 = 10$

1)
$$10^2 =$$

4)
$$10^{-2} =$$

$$2)$$
 $10^4 =$

5)
$$10^{-5} =$$

3)
$$10^7 =$$

Section B: Model: $2 \times 10^2 = 200$

7)
$$3 \times 10^2 =$$

7)
$$3 \times 10^2 =$$
 10) $6 \times 10^{-3} =$

8)
$$7 \times 10^4 =$$

8)
$$7 \times 10^4 =$$
 _____ 11) $900 \times 10^{-2} =$ _____

9)
$$2.4 \times 10^3 =$$

9)
$$2.4 \times 10^3 =$$
 _____ 12) $4 \times 10^{-6} =$ ____

Section C: Now convert from decimal form into scientific notation. Model: $1.000 = 10^3$

Section D: Model: $2,000 = 2 \times 10^{3}$