Workbook

Surviving Chemistry

One Concept at a Time

A Workbook for high school chemistry

Free Preview and Printouts

Effiong Eyo

Surviving Chemistry Book Series
Family of five student-friendly HS chemistry books that are certain to:

🌟 Excite students to study
🌟 Engage students in learning
🌟 Enhance students understanding

For more information and to order:

e3chemistry.com (877) 224 – 0484
info@e3chemistry.com
Table of Contents

Worksheets

Topic 1: Matter and Energy
- Worksheet 1: Types of matter
- Worksheet 2: Phases of matter, energy, and Temperature
- Worksheet 3: Heat and Heat calculations
- Worksheet 4: Characteristics of gases and gas law calculations

Topic 2: The Periodic Table
- Worksheet 5: Types of Elements and their properties
- Worksheet 6: Classifying the Elements
- Worksheet 7: Periodic Trends

Topic 3: The Atomic Structures
- Worksheet 8: Historical development of atom
- Worksheet 9: The atomic structures
- Worksheet 10: Atomic mass calculations
- Worksheet 11: Bohr’s atomic model and electron configurations
- Worksheet 12: Neutral atoms and ions

Topic 4: Chemical Bonding
- Worksheet 13: Chemical bonding, stability of atoms, and energy
- Worksheet 14: Bonding between atoms (intermolecular forces)
- Worksheet 15: Types of substances and their properties
- Worksheet 16: Molecular structures, molecular shapes, and molecular polarity
- Worksheet 17: Lewis electron-dot diagrams

Topic 5: Chemical Formulas and Equations
- Worksheet 18: Chemical formulas
- Worksheet 19: Writing and naming formulas
- Worksheet 20: Chemical equations

Topic 6: Moles: Mathematics of Formulas and Equations
- Worksheet 21: Mole calculations in formulas
- Worksheet 22: Percent composition calculations
- Worksheet 23: Mole – mole calculations in equations
Table of Contents

Topic 7: Solutions

- Worksheet 24: Solubility factors
- Worksheet 25: Types of solutions
- Worksheet 26: Molarity and parts per million calculations
- Worksheet 27: Vapor pressure
- Worksheet 28: Effect of solute on boiling and freezing points

Topic 8: Acids, Bases and Salts

- Worksheet 29: Terms and definitions
- Worksheet 30: Properties of acids and bases
- Worksheet 31: Reactions of acids and bases
- Worksheet 32: Titration
- Worksheet 33: Relating H+ concentration to pH
- Worksheet 34: Naming and writing formula of acids

Topic 9: Kinetics and Equilibrium

- Worksheet 35: Rate of reactions
- Worksheet 36: Energy and chemical reactions
- Worksheet 37: Potential energy diagrams
- Worksheet 38: Equilibrium and Le Chatelier’s principle

Topic 10: Organic Compounds

- Worksheet 39: Properties of organic compounds
- Worksheet 40: Hydrocarbon compounds
- Worksheet 41: Functional group compounds
- Worksheet 42: Classes of organic compounds
- Worksheet 43: Drawing organic structures
- Worksheet 44: Isomers
- Worksheet 45: Organic reactions

Topic 11: Redox and Electrochemistry

- Worksheet 46: Oxidation numbers
- Worksheet 47: Redox equation, half-reaction equations
- Worksheet 48: Interpreting redox equations
- Worksheet 49: Balancing redox equations
- Worksheet 50: Electrochemistry- Definitions and facts
- Worksheet 51: Electrochemical cells

Topic 12: Nuclear Chemistry

- Worksheet 52: Definition and facts of nuclear chemistry
- Worksheet 53: Nuclear transmutations and equations
- Worksheet 54: Half-life calculations and Reference Table N
Table of Contents

Multiple Choice Questions

<table>
<thead>
<tr>
<th>Topic 1: Matter and Energy</th>
<th>Topic 7: Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 2: The Periodic Table</td>
<td>Topic 8: Acids, Bases and Salts</td>
</tr>
<tr>
<td>Topic 3: The Atomic Structure</td>
<td>Topic 9: Kinetic and Equilibrium</td>
</tr>
<tr>
<td>Topic 4: Chemical Bonding</td>
<td>Topic 10: Organic Chemistry</td>
</tr>
<tr>
<td>Topic 5: Chemical Formulas and Equations</td>
<td>Topic 11: Redox and Electrochemistry</td>
</tr>
<tr>
<td>Topic 6: Moles calculations</td>
<td>Topic 12: Nuclear Chemistry</td>
</tr>
</tbody>
</table>

Constructed Response Questions

<table>
<thead>
<tr>
<th>Topic 1: Matter and Energy</th>
<th>Topic 7: Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 2: The Periodic Table</td>
<td>Topic 8: Acids, Bases and Salts</td>
</tr>
<tr>
<td>Topic 3: The Atomic Structure</td>
<td>Topic 9: Kinetic and Equilibrium</td>
</tr>
<tr>
<td>Topic 4: Chemical Bonding</td>
<td>Topic 10: Organic Chemistry</td>
</tr>
<tr>
<td>Topic 5: Chemical Formulas and Equations</td>
<td>Topic 11: Redox and Electrochemistry</td>
</tr>
<tr>
<td>Topic 6: Mole calculations</td>
<td>Topic 12: Nuclear Chemistry</td>
</tr>
</tbody>
</table>

Reference Table Questions

<table>
<thead>
<tr>
<th>Table A: Standard Temperature and Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table B: Physical Constants for Water</td>
</tr>
<tr>
<td>Table C: Selected Prefixes</td>
</tr>
<tr>
<td>Table D: Selected Units</td>
</tr>
<tr>
<td>Table E: Selected Polyatomic Ions</td>
</tr>
<tr>
<td>Table F: Solubility Guidelines</td>
</tr>
<tr>
<td>Table G: Solubility Curves</td>
</tr>
<tr>
<td>Table H: Vapor Pressure of Four Liquids</td>
</tr>
<tr>
<td>Table I: Heat of reactions at 101.3 KPa and 298 K</td>
</tr>
<tr>
<td>Table J: Activity Series</td>
</tr>
<tr>
<td>Table K: Common Acids</td>
</tr>
<tr>
<td>Table L: Common Bases</td>
</tr>
<tr>
<td>Table M: Common Acid-Base Indicators</td>
</tr>
<tr>
<td>Table N: Selected Radioisotopes</td>
</tr>
<tr>
<td>Table O: Symbols Used in Nuclear Chemistry</td>
</tr>
<tr>
<td>Table P: Organic Prefixes</td>
</tr>
<tr>
<td>Table Q: Homologous Series of Hydrocarbon</td>
</tr>
<tr>
<td>Table R: Organic Functional Groups</td>
</tr>
<tr>
<td>Table S: Properties of Selected Elements</td>
</tr>
<tr>
<td>Table T: Formulas and Equations</td>
</tr>
</tbody>
</table>
Set A: Historical atomic models

Objective: To test your knowledge of historical atomic models

Draw and briefly describe each historical model of the atom.

1. Hard sphere model

2. Plum-pudding model

3. Empty space model

4. Bohr’s model

5. Wave mechanical model

7. State conclusions of the Cathode ray experiment.
Set A: Terms and definitions

Objective: By defining these words, you will become more familiar with atomic structure related terms and their definitions.

Define, neatly and clearly, the following atomic structure related terms.

1. Nucleus
2. Neutron
3. Proton
4. Electron
5. Nucleons
6. Atomic number
7. Mass number
8. Atomic mass
9. Isotopes
10. Atomic mass unit

Set B: The Subatomic Particles

Objective: To test your knowledge of facts related to the three subatomic particles

Complete the table below

<table>
<thead>
<tr>
<th>Subatomic particles</th>
<th>Symbol</th>
<th>Mass</th>
<th>Charge</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Proton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Electron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Neutron</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Worksheet 9
Topic 3

Set C: Determining number of atomic particles
Objective: To test your ability to determine number of particles in an atom.

14. Complete the table below based on information provided for each atom. All the atoms are neutral.

<table>
<thead>
<tr>
<th></th>
<th>Protons</th>
<th>electrons</th>
<th>Neutrons</th>
<th>Mass Number</th>
<th>Atomic number</th>
<th>Nuclear charge</th>
<th>Nucleons</th>
<th>Element’s symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom A</td>
<td>44</td>
<td></td>
<td></td>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom B</td>
<td></td>
<td>84</td>
<td></td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom C</td>
<td></td>
<td></td>
<td>56</td>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom D</td>
<td></td>
<td></td>
<td></td>
<td>89</td>
<td>229</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom E</td>
<td>30</td>
<td></td>
<td></td>
<td>+28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom F</td>
<td>92</td>
<td></td>
<td></td>
<td>233</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom G</td>
<td></td>
<td>82</td>
<td></td>
<td>Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set D: Isotope symbols
Objective: To test your ability to relate isotope symbol to number of particles in an atom.

15. Complete the table below based on information provided for each atom. All the atoms are neutral.

<table>
<thead>
<tr>
<th></th>
<th>Isotope symbol</th>
<th>Protons</th>
<th>electrons</th>
<th>neutrons</th>
<th>Mass number</th>
<th>Atomic number</th>
<th>Nuclear charge</th>
<th>Nucleons</th>
<th>Nucleus Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atom H</td>
<td>$^{142}_{59}$Pr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom I</td>
<td></td>
<td>31</td>
<td></td>
<td></td>
<td>+27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom J</td>
<td>$^{243}_{95}$Am</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom K</td>
<td></td>
<td>77</td>
<td></td>
<td></td>
<td>194</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom L</td>
<td>$^{80}_{34}$Se</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atom M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Set A: Calculating atomic mass

Objective: To test your ability to calculate atomic mass of an element from relative abundance and mass numbers of its isotopes

Calculate the atomic mass for each element given the relative percentages and the mass numbers of the isotopes. Show ALL set up and work.

1) 19.78 % of 10B

 80.22% of 11B

2) 93.12 % of 39K

 6.88 % of 41K

3) 78.70 % of 24Mg

 10.13 % of 25Mg

 11.17 % of 26Mg

4) 80.0% of 70X

 12.25% of 69X

 7.75% of 68X

5) A sample of chlorine contains 75% of chlorine-35 and 25% of chlorine-37. What is the atomic mass of chlorine? *show work.*

6) Element X has two naturally occurring isotopes. If 72% of the atoms have a mass of 85 amu and 28% of the atoms have a mass of 87 amu, what is the atomic mass of element X. *Show work.*

7) The atomic mass of an element is dependent upon what two factors?
Set A: Drawing Bohr’s atomic model

Objective: To test your ability to obtain information from electron configuration, and to draw Bohr’s atomic model.

Based on information from the Periodic Table, answer questions in each box about the given element. Then draw Bohr’s atomic model for the element.

1. Magnesium - 25
 - Electron configuration:
 - Number of electron shells: ___
 - Valance shell: : ___
 - Number of valance electrons: ___
 - Draw Bohr’s atomic model for magnesium-25.
 Indicate appropriate number of particles in the nucleus, and electrons (-) in electron shells.

2. Neon - 21
 - Electron configuration:
 - Number of electron shells: ___
 - Valance shell: : ___
 - Number of valance electrons: ___
 - Draw Bohr’s atomic model for neon-21.
 Indicate appropriate number of particles in the nucleus, and electrons (-) in electron shells.

3. Rubidium - 86
 - Electron configuration:
 - Number of electron shells: ___
 - Valance shell: : ___
 - Number of valance electrons: ___
 - Draw Bohr’s atomic model for rubidium-86.
 Indicate appropriate number of particles in the nucleus, and electrons (-) in electron shells.

4. Selenium - 78
 - Electron configuration:
 - Number of electron shells: ___
 - Valance shell: : ___
 - Number of valance electrons: ___
 - Draw Bohr’s atomic model for selenium-78.
 Indicate appropriate number of particles in the nucleus, and electrons (-) in electron shells.
Worksheet 11
Topic 3

Set B: Electron configurations
Excited and Ground States

Objective: To test your ability to interpret electron configuration

Electron configurations for six atoms are given. Complete information about each neutral atom on the table.

<table>
<thead>
<tr>
<th></th>
<th>Electron configuration</th>
<th>Total number of electrons</th>
<th>Total number of electron shells</th>
<th>Electron shell with the highest energy electrons</th>
<th>Excited or ground state</th>
<th>Atom’s symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Atom A: 2 – 8 – 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Atom B: 2 – 3 – 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Atom C: 2 – 8 – 7 – 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Atom D: 2 – 8 – 18 – 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Atom F: 1 – 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set C: Electron transition

Objective: To test your ability to interpret electron transition in atoms

Below, electron transitions from one electron shell to another are given for four different atoms.

Answer questions 11 - 16 based on the electron transition in these atoms.

- **Atom G:** 3rd shell \rightarrow 2nd shell
- **Atom I:** 4th shell \rightarrow 6th shell
- **Atom H:** 1st shell \rightarrow 4th shell
- **Atom J:** 5th shell \rightarrow 3rd shell

11. In which atom or atoms are energy absorbed during the electron transition?
12. In which atom or atoms are energy released during the electron transition?
13. In which atom or atoms are spectral lines observed?
14. In which atom is the greatest amount of energy absorbed?
15. In which atom is the greatest amount of energy released?
16. In atom G, compare the energy of the electron in the 3rd shell to that of the electron in the 2nd shell.
Worksheet 11

Topic 3

Set D: Bright-line spectra

Objective: To test your ability to analyze bright-line spectra chart

Below, bright-line spectral chart for five elements and four unknown samples are given.

Answer questions 17 - 21 based on the information given in the chart.

<table>
<thead>
<tr>
<th>7500</th>
<th>7000</th>
<th>6500</th>
<th>6000</th>
<th>5500</th>
<th>5000</th>
<th>4500</th>
<th>4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>wavelength:</td>
<td>A (10^-10 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithium (Li)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium (He)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium(K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium(Cd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen (H)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. List all elements present in unknown sample W.

18. List all elements present in unknown sample X.

19. List all elements present in unknown sample Y.

20. List all elements present in unknown sample Z.

21. Explain, in terms of electron transition, how bright-line spectra are produced by atoms.
Worksheet 12 : Neutral atoms and ions

Set A: Terms and definitions
Objective: By defining these words, you’ll become more familiar with terms and definitions related to ions and neutral atoms.

Define the terms and answer questions below. Be neat and clear.

1. Neutral atom
2. Ion
3. Positive ion
4. Negative ion
5. Valance electron

Set B: Comparisons in ions and neutral atoms
Objective: To test your knowledge of facts related of ions and neutral atoms

Answer the followings in one clear sentence.

6. Compare the number of electrons to the number of protons in a neutral atom.
7. Compare the number of electrons of a positive ion to that of the neutral atom. Include both positive ion and neutral atom in your answer.
8. Compare the number of electrons of a negative ion to that of the neutral atom. Include both negative ion and neutral atom in your answer.
9. Compare the number of protons to the number of electrons in a positive ion. Include both protons and electrons in your answer.
10. Compare the number of protons to the number of electrons in a negative ion. Include both protons and electrons in your answer.
11. Compare the size of a positive ion to that of the neutral atom. Include both positive ion and neutral atom in your answer.
12. Compare the size of a negative ion to that of the neutral atom. Include both negative ion and neutral atom in your answer.
Set C: Particles in atoms and ions
Objective: To test your ability to determine information from atomic and ionic symbols.

Below, symbol of an atom or ion is given. Complete the table below based on the symbol given.

<table>
<thead>
<tr>
<th>Atom and Ion symbols</th>
<th>Atomic number</th>
<th>Number of protons</th>
<th>Number of electrons</th>
<th>Number of neutrons</th>
<th>Electron configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. C</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. C^4^-</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Sr</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Sr^2+</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. 27Al</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. 27Al^3+</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. 31P</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. 31P^-3</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set D: Determining charge of atom.
Objective: To test your ability to determine charge of atoms based on the number of subatomic particles.

Determine the charge of each atom based on information given.

21. **Atom A:** 46 protons, 61 neutrons, 42 electrons.
 Charge =

22. **Atom B:** mass number of 209, nuclear charge of 83, and 81 electrons:
 Charge =

23. **Atoms C:** nuclear charge of 32, 36 electrons, 39 neutron
 Charge =

24. **Atoms D:** 54 electrons, 122 nucleons, atomic number 51
 Charge =

25. **Atom E:** 28 neutrons, nuclear charge of 22, 20 electrons
 Charge =
E3 Scholastic Publishing
7 MARNE AVE. NEWBURGH, NY 12550

Surviving Chemistry Books: Ordering Catalog for Schools and Teachers

Our Exam Preps
Questions for Chemistry AP Exam Practice - 2013 $16.64
ISBN: 978-1478324812

Questions for Biology Regents Exam Practice $15.64
ISBN: 978-1469979441

Questions for Regents Chemistry Exam Practice $15.64
ISBN: 978-0983132981

Chemistry Regents Pocket Study Guide (Black Print) $13.82
ISBN: 978-1460970874

Chemistry Regents Pocket Study Guide (Color Print) $19.98
ISBN: 978-1460980620

Our Classroom Materials
Surviving Chemistry Review Book – 2012 Revision* $15.64
ISBN: 978-1478395409

Review Book Student Answer Sheet Booklet $6.99
ISBN: 978-1466319523

Surviving Chemistry Guided Study Book - 2012 Revision* $17.99
ISBN: 978-1478257868

Surviving Chemistry Workbook* $17.99
ISBN: 978-1460942765

*Free Answer Booklets (up to 4) with all class-size orders

Cover colors: Each of our book titles is printed in three different cover colors.
Same book title, same great contents, same price, three different cover colors to choose from.
Visit our website e3chemistry.com to see all available cover colors for each title.

List Price: Visit our website for list price of each title
Catalog Price: Prices shown are discounted up to 25% from book list price.
Online Prices: Book prices on our website are lower (at a higher discount up to 35%) than our catalog prices.
We encourage schools and teachers to place orders on our website for bigger savings.
Book prices and discounts on other online sites like amazon.com and barnesandnoble.com may be different from our catalog and website prices.

Shipping: 10% shipping and handling charge on all class orders. Shipping discount is available for online orders.

Ordering Methods:
Online: e3chemistry.com
Fax/Phone: (877) 224-0484
Mail: Send Purchase Order to above address

E3 Scholastic Publishing is a Print-On-Demand publisher. Books are printed only when an order is placed.
All pre-paid class orders are processed, printed and shipped within a couple of days.
Class-size orders that are not pre-paid may experience significant delays in processing and shipment.
We encourage schools and teachers to prepay for class-size orders to ensure that books are delivered when they are needed.

Three convenient ways to Pre-Pay for your class-size orders:
1. Place your order from our website. Save big and pay Securely with a credit card through PayPal.
2. Call us to request an online invoice. Just Click and Pay Securely with a credit card through PayPal (most convenient)
3. Send a check for Order Total with your completed Purchase Order form.
 We also accept pre-payment of half the order total. We will invoice you the remaining amount after delivery.

Please call or email us anytime with any questions or comments.