Name:					
Lab #	 	 _			

Date:	
Period	

Surface Area and Weathering Rates

Question: How does the amount of surface area affect the rate at which a particle will weather?

Hypothesis:
Vocabulary: Weathering:
Physical Weathering:
Formula for Area:
Materials: 2 wood blocks, held together by a rubber band, 2 pieces of candy, metric ruler, calculator

Procedure: Part A.

- - 1. Measure and record the surface area of both blocks when they are held together by the rubber band (assume they are just one block).
 - 2. Measure and calculate the area for each side of the block.
 - 3. Add the area of all the sides together to get the surface area of the block.

Area side 1	Side 2	Side 3	Side 4	Side 5	Side 6	Surface Area	

Imagine the block is undergoing physical weathering and has now been broken into 2 separate, smaller blocks (remove the rubber band to accomplish this). Now, measure and record the surface area of each individual smaller block.

Find the sum of the surface are for the 2 separate blocks and record your answers. Show your measurements.

Block 1 Area side 1	Side 2	Side 3	Side 4	Side 5	Side 6	Surface Area Block 1
Block 2 Area side 1	Side 2	Side 3	Side 4	Side 5	Side 6	Surface Area Block 2
					Total for both blocks	

Compare the surface area of the "un-weathered" (rubber banded) block with the sum of the surface area for the 2 "weathered" (separate) blocks. Which one has more surface area?

Part B:

Keeping in mind that the blocks were physically weathered (when the rubber band was removed), now we will physically weather the candy by chewing one.

- 1. Place one candy in your mouth and do not chew. Using the clock or stop watch, determine how long it takes to dissolve in your mouth.
- 2. Place one piece of candy in your mouth and chew it (you are now physically weathering the candy). Again, time how long it takes to disappear in your mouth.

Results:

- 1. When the two blocks were separated (physically weathered), what happened to the total surface area?
- 2. How much more surface area is there when the blocks were in smaller pieces?
- 3. Based on what you learned in results 1 and 2, when you physically weathered (chewed) the candy, what do you expect happened to the amount of surface area?
- 4. Which candy (unchewed or chewed) had the faster rate of weathering?_____
- 5. Which candy had the greatest surface area?

Conclusions:

6. Using specific examples and details from your results, describe what happens to the amount of surface area exposed when a particle is broken down into smaller and smaller pieces.

7. Using the candy results, explain what happens to the rate of weathering if more surface area is exposed.

8. Draw a simple graph below to show the relationship between surface area and weathering.